国产精品视频你懂的-国产精品视频网-国产精品视频一区二区猎奇-国产精品视频一区二区三区-国产精品视频一区二区三区不-国产精品视频一区二区三区不卡

廣東可易亞半導體科技有限公司

國家高新企業

cn en

應用領域

碳化硅mos管的優缺點,驅動電路設計分析-KIA MOS管

信息來源:本站 日期:2024-06-25 

分享到:

碳化硅mos管的優缺點,驅動電路設計分析-KIA MOS管


碳化硅mos管詳解

碳化硅(SiC)是由碳元素和硅元素組成的一種化合物半導體材料,是制作高溫、高頻、大功率、高壓器件的理想材料之一。相比傳統的硅材料(Si),碳化硅的禁帶寬度是硅的3倍;導熱率為硅的4-5倍;擊穿電壓為硅的8-10倍;電子飽和漂移速率為硅的2-3倍,滿足了現代工業對高功率、高電壓、高頻率的需求,主要被用于制作高速、高頻、大功率及發光電子元器件,下游應用領域包括智能電網、新能源汽車、光伏風電、5G通信等,在功率器件領域,碳化硅二極管、MOSFET已經廣泛應用。  


碳化硅器件有更耐高壓,在開關頻率、散熱能力和損耗等指標上也遠好于硅基器件。除了禁帶寬度更寬,碳化硅材料還具有更高的飽和電子遷移速度、更高的熱導率和更低的導通阻抗,碳化硅器件相比于硅基器件的優勢體現在:阻抗更低,可以縮小產品體積,提高轉換效率;頻率更高,碳化硅器件的工作頻率可達硅基器件的10倍,而且效率不隨著頻率的升高而降低,可以降低能量損耗;能在更高的溫度下運行,同時冷卻系統可以做的更簡單。


碳化硅從材料到半導體功率器件會經歷單晶生長、晶錠切片、外延生長、晶圓設計、制造、封裝等工藝流程。在合成碳化硅粉后,先制作碳化硅晶錠,然后經過切片、打磨、拋光得到碳化硅襯底,經外延生長得到外延片。外延片經過光刻、刻蝕、離子注入、金屬鈍化等工藝得到碳化硅晶圓,將晶圓切割成die,經過封裝得到器件,器件組合在一起放入特殊外殼中組裝成模組。


碳化硅(SiC)MOS管作為一種新型功率器件,與傳統的硅基功率器件相比,在某些特定條件下具有獨特的優勢,但也存在一定的不足。SiC MOS管具有溫度高、頻率高、效率高等優點,但在制造成本和可靠性方面仍存在挑戰和改進空間。


優點:

高溫特性優異:能夠在高溫下正常工作,具有更高的熱穩定性。

高頻特性好:由于電子遷移速度快,損耗小,在高頻場合下具有更好的性能表現。

開關速度快:門電容小,可以實現更快的開關速度和更高的效率。

導通損耗小:導通電阻比硅MOSFET低得多,有利于減少導通損耗。

體積小、重量輕:采用了更小尺寸的芯片,可以提高功率器件的集成度。


缺點:

制造工藝難度大:需要采用更高難度的材料和工藝,導致制造成本較高。

技術有待成熟:碳化硅MOS管的商業化應用相對較新,技術和市場的認可度還需要進一步提高。

可靠性問題:由于材料的缺陷、器件的壽命等問題,其可靠性還有待提高。


碳化硅器件驅動電路設計建議

碳化硅器件的驅動選型與設計,成為發揮SiC MOSFET特性優勢的關鍵環節。為SiC MOSFET選擇合適的柵極驅動芯片,需要考慮如下幾個方面:


1. 驅動電平與驅動電流的要求

由于SiC MOSFET器件需要工作在高頻開關場合,其面對的由于寄生參數所帶來的影響更加顯著。由于SiC MOSFET本身柵極開啟電壓較低,在實際系統中更容易因電路串擾發生誤導通,因此通常建議使用柵極負壓關斷。

為了使SiC MOSFET在應用中更簡易替代IGBT,各半導體廠家在SiC MOSFET設計驅動特性接近硅IGBT。常規碳化硅器件的驅動電壓在+18V左右,在某些應用中可以使用15V柵極開通電壓,更低的驅動電壓+12V。而柵極關斷電壓最低為-5V左右。因此,理想的適用于SiC MOSFET的驅動芯片應該能夠覆蓋各種不一樣的柵極開通和關斷電壓需求,至少需要驅動芯片的供電電壓壓差Vpos-Vneg可達到25v。

碳化硅mos管,優缺點,驅動電路

雖然SiC MOSFET具有較小的柵極電容,所需要的驅動功率相對于傳統IGBT顯著較小,但是驅動電流的大小與開關器件工作速度密切相關,為適應高頻應用快速開通關斷的需求,需要為SiC MOS選擇具有較大峰值輸出電流的驅動芯片,并且如果輸出脈沖同時兼具足夠快的上升和下降速度,則驅動效果更加理想,這就意味著要求驅動芯片的上升與下降時間參數都比較小。


2.滿足較短死區時間設定的要求

在橋式電路結構中,死區時間的設定是影響系統可靠運行的一個關鍵因素。SiC MOSFET器件的開關速度較傳統IGBT有了大幅提高,許多實際使用都希望能因此進一步提高器件的工作頻率,從而提高系統功率密度。這也意味著系統設計中需要較小的死區時間設定與之匹配,同時,選擇較短的死區時間,也可以保證逆變系統具有更高的輸出電壓質量。


死區時間的計算,除了要考慮開關器件本身的開通與關斷時間,尤其是小電流下的開關時間之外,驅動芯片的傳輸延時也需要考量。尤其對于本身開關速度較快的開關器件,芯片的延時在死區設定的考量中所占的比重更大。另外,在隔離型驅動設計中,通常采用的是一拖一的驅動方式,因此,芯片與芯片之間的參數匹配差異,也需要在死區設定時一并考量。要滿足較小死區時間的要求,選擇驅動芯片時,需要相應的參考芯片本身傳輸延時時間參數,以及芯片對芯片的匹配延時。


3.芯片所帶的保護功能

1)短路保護

SiC MOSFET與傳統硅MOSFET在短路特性上有所差異,不同型號SiC MOSFET短路承受能力存在差異,但短路保護響應時間越短越好。借鑒IGBT退飽和檢測方法,根據開關管輸出特性,SiC MOSFET漏源極電壓大小可反映電流變化。與硅IGBT相比,SiC MOSFET輸出特性曲線的線性區及飽和區沒有明顯過渡,發生短路或過流時電流上升仍然很快,這就意味著保護電路需要更快的響應速度來進行保護。


針對SiC MOSFET的短路保護需求,需要選擇檢測速度快,響應時間短的驅動芯片進行保護電路設計。


此外,根據IGBT的設計經驗,每次開通時,需求設定一段消隱時間來避免由于開通前期的Vce電壓從高位下降所導致的DSAET誤觸發。消隱時間的需要,又對本只有3us的SiC MOSFET的短路保護電路設計提出更嚴苛的挑戰,需要驅動芯片的DESAT相關參數具有更高的精度,以實現有效的保護設計。同時,也需要更優化的驅動電路的PCB設計,保證更小的環路寄生電感的影響。


2)有源米勒箝位

SiC MOSFET的柵極開啟電壓較低,加上其寄生電容小,它對驅動電路寄生參數的影響也更加敏感,更容易造成誤觸發,因此常推薦使用負壓進行關斷。但同時,由于SiC MOSFET所能承受的柵極負壓范圍較小,過大的負向電壓尖峰可能擊穿開關管,某些廠家提出推薦較高的負壓關斷,甚至0v關斷。此種情況下,為保證器件在關斷期間不因米勒效應發生誤觸發,可以使用帶有有源米勒箝位功能的驅動芯片進行設計。


4. 芯片抗干擾性(CMTI)

配合SiC MOSFET使用的驅動芯片,處于高頻應用環境下,這要求芯片本身具有較高的抗干擾度。常用于評估驅動芯片抗擾度的參數為CMTI。現行標準中,對磁隔離型驅動芯片抗擾性地測量方法,兼顧了電壓上升延與下降延dv/dt,這與實際SiC MOSFE開通和關斷都非常迅速的工作特性非常相似,因此CMTI參數可以作為衡量用于驅動SiC MOSFE的驅動芯片抗擾度的技術參考。

碳化硅mos管,優缺點,驅動電路

碳化硅mos管,優缺點,驅動電路

碳化硅mos管,優缺點,驅動電路


聯系方式:鄒先生

聯系電話:0755-83888366-8022

手機:18123972950(微信同號)

QQ:2880195519

聯系地址:深圳市福田區金田路3037號金中環國際商務大廈2109


請搜微信公眾號:“KIA半導體”或掃一掃下圖“關注”官方微信公眾號

請“關注”官方微信公眾號:提供  MOS管  技術幫助

免責聲明:本網站部分文章或圖片來源其它出處,如有侵權,請聯系刪除。