詳解反激電源MOS管D-S電壓波形產生原因-KIA MOS管
信息來源:本站 日期:2022-09-05
反激電源MOS D-S之間電壓波形產生的原因?這是一個典型的問題,本質原因就是功率級寄生電容、電感引起的諧振;問題其實應細化為:為什么會有兩次諧振,諧振產生的模型是怎樣的?
如下為反激式電源實現方案,該方案采用初級側穩壓(PSR)技術,
Q1導通時,變壓器初級電感存儲能量,輸出續流二極管Dfly反向偏置,Cout輸出能量給負載;
Q1關斷時,變壓器初級線圈釋放能量,輸出續流二極管正向偏置,向輸出端提供電能;
開關電源產生振鈴的主要原因在于非理想器件存在功率級寄生電容、電感。所謂諧振,即:在MOS管開通、關斷切換的過程中,寄生電感將能量傳遞給寄生電容進行充電,充電結束后寄生電容又釋放電能給寄生電感儲能,如此循環往復。
提問圖片中,有2次諧振,
第一次諧振
該諧振產生的時間點在MOS管關斷的瞬間,等效諧振電路如下:
Loop:初次級間的漏電感、初級勵磁電感、功率MOSFET封裝電感之和
Coss:MOS管寄生電容、線路寄生電容
第二次諧振
這是開關電源DCM模式特有的一個振鈴現象,
此處你必須要了解開關電源電感如下兩種模式:
CCM:連續導通模式,次級端反射電流在MOS通斷,變壓器線圈換相期間不會到達0;
DCM:斷續導通模式,次級端反射電流在MOS通斷,變壓器線圈換相期間到達0。
在DCM模式下,當MOS管關斷,且在次級反射電流消耗為0之前,次級線圈輸出相位的電壓高于實際輸出電壓;當反射電流消耗為0,即次級線圈電流消耗為0時,實際輸出電壓由輸出電容提供,此時次級輸出相位的電壓等于0,在次級輸出相位電壓由高于輸出電壓到等于0的變化過程中,會出現電壓的衰減振蕩,而該衰減振蕩會耦合到初級線圈并加載在MOS與線圈連接的開關節點處。
由于該諧振給MOS管的寄生電容充電,若MOS在此時導通,則可能碰到寄生電容電位被充到較高的時刻,此時寄生電容所充電的能量若被直接導到GND會造成MOS管的導通損耗,針對該問題,誕生出了準諧振技術,即:DCM模式下,初級側MOS在開關節點諧振電壓擺幅的谷底附近導通。
聯系方式:鄒先生
聯系電話:0755-83888366-8022
手機:18123972950
QQ:2880195519
聯系地址:深圳市福田區車公廟天安數碼城天吉大廈CD座5C1
請搜微信公眾號:“KIA半導體”或掃一掃下圖“關注”官方微信公眾號
請“關注”官方微信公眾號:提供 MOS管 技術幫助
免責聲明:本網站部分文章或圖片來源其它出處,如有侵權,請聯系刪除。